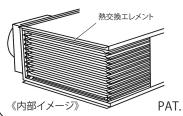


## 電気、蒸気、ガス、灯油を熱源とする加熱、燃焼、乾燥設備からの 排気熱を 平均 70% 回収!! (NSACシリーズ:熱交換エレメント銅仕様)



## D電気代、CO 2排出量削減


-熱交換器のエレメントはアルミ材ではなく、長期間使用でき殺菌性に優れ、 耐久性を重視した銅材と、ステンレス材の2種類を使用しています。

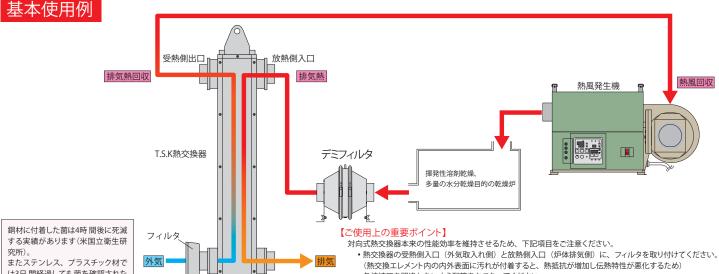
据え付け場所を選ばないスリムタイプ (天地逆を除く縦置き、横置き対応)

圧力損失が低く、専用送風機の追加が必要なし

配管・ダクト接続が容易

#### 従来品と比較して、 回収率が更に向上! 各製品約10%UP!



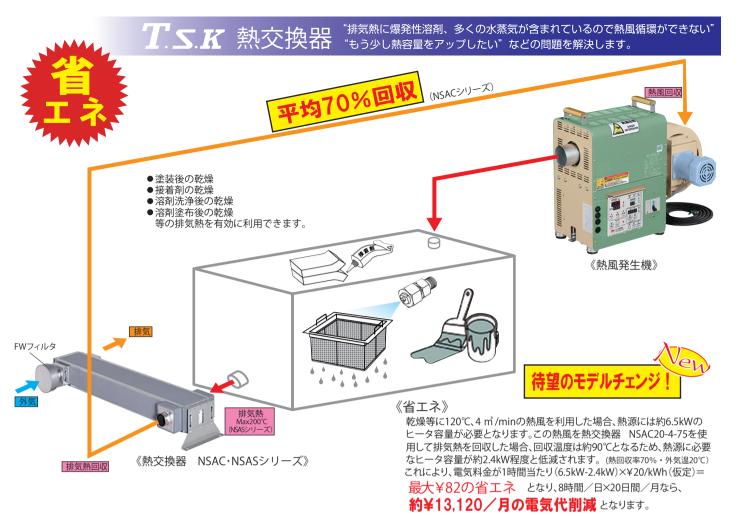



■什様

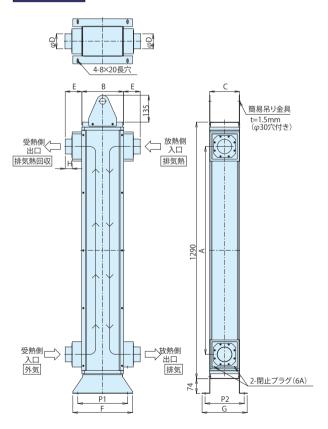
| 仕 様        | 熱交換エレメント <mark>銅</mark> 仕様 <b>N</b> SACシリーズ |              |               |                |                | 熱交換エレメント ステンレス仕様 NSASシリーズ |              |               |                |                |  |
|------------|---------------------------------------------|--------------|---------------|----------------|----------------|---------------------------|--------------|---------------|----------------|----------------|--|
| 型 式        | NSAC20-4-75                                 | NSAC40-8-100 | NSAC60-12-125 | NSAC40W-16-150 | NSAC60W-24-200 | NSAS20-4-75               | NSAS40-8-100 | NSAS60-12-125 | NSAS40W-16-150 | NSAS60W-24-200 |  |
| 熱交換方式      | 対向式熱交換器                                     |              |               |                |                |                           |              |               |                |                |  |
| 使用流体       | 空気                                          |              |               |                |                |                           |              |               |                |                |  |
| 平均熱回収率     | 約70%                                        |              |               |                |                | 約60%                      |              |               |                |                |  |
| 最高使用温度     | 180℃                                        |              |               |                |                | 200℃                      |              |               |                |                |  |
| 処 理 風 量    | 4 m³/min                                    | 8 m³/min     | 12 m³/min     | 16 m³/min      | 24 m³/min      | 4 m³/ min                 | 8 m³/min     | 12 m³/min     | 16 m³/min      | 24 m³/min      |  |
| 耐 圧        | 2.96kPa ※1                                  |              |               |                |                |                           |              |               |                |                |  |
| 出入口口径      | φ75                                         | φ100         | φ125          | $\varphi$ 150  | $\varphi$ 200  | φ75                       | φ100         | φ125          | φ150           | φ200           |  |
| 本体概算質量     | 32kg ±5%                                    | 44kg ±5%     | 58kg ±5%      | 94kg ±5%       | 122kg ±5%      | 30kg ±5%                  | 41kg ±5%     | 55kg ±5%      | 90kg ±5%       | 118kg ±5%      |  |
| 材質(接ガス部)   | 熱交                                          | を換エレメント:     | 銅、その他:2       | ZA M®・ステン      | レス             | 熱交換エレメント:ステンレス、その他:ステンレス  |              |               |                |                |  |
| 材質(接ガス部以外) | ZA M® (高耐食溶融めっき鋼板)+断熱処理(水溶性シリコン塗布済グラスウール)   |              |               |                |                |                           |              |               |                |                |  |
| 気 密 材 料    | シリコン、及びシリコンスポンジ (ノンシリコン仕様 特注にて検討します)        |              |               |                |                |                           |              |               |                |                |  |
| 取付姿勢       | 縦置き(天地逆は不可)、または横置き                          |              |               |                |                |                           |              |               |                |                |  |
| 現金販売価格概込   | ¥287,100                                    | ¥475,200     | ¥710,600      | ¥943,800       | ¥1,427,800     | ¥287,100                  | ¥475,200     | ¥710,600      | ¥943,800       | ¥1,427,800     |  |

一台の送風機で放熱側と受熱側を対応する場合、及び放熱側への押し込み送風機と受熱側への引き込み送風機の各1台(計2台)にて対応する場合は、熱交換器、熱源、及び配管を含むす べての圧力損失が約1.48kPa以下となるように設定してください。圧力損失が約1.48kPaを超える場合は、受熱側には押し込み用の送風機を設けてください。






放熱側出口

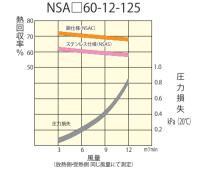

受熱側入口

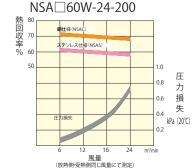
は3日 間経過しても菌を確認された 場合があります。

- 各接続口を間違わないよう配管をおこなってください
- 必ず高温側流体と低温側流体は同時に流して、本体耐圧並びに最高使用温度以下で使用してください。

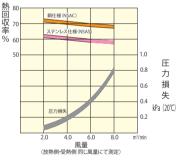


### 外形図

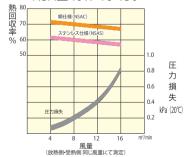




| 型式              | φD           | Α    | В   | С   | Е   | F   | G   | Н  | P1  | P2  |
|-----------------|--------------|------|-----|-----|-----|-----|-----|----|-----|-----|
| NSA□ 20− 4− 75  | φ75          | 1045 | 209 | 151 | 84  | 300 | 227 | 35 | 250 | 197 |
| NSA□ 40− 8−100  | φ100         | 1030 | 209 | 224 | 104 | 300 | 300 | 44 | 250 | 270 |
| NSA□ 60−12−125  | φ125         | 1015 | 391 | 181 | 104 | 482 | 257 | 44 | 432 | 227 |
| NSA□ 40W−16−150 | <i>φ</i> 150 | 1030 | 209 | 454 | 204 | 300 | 530 | 44 | 250 | 500 |
| NSA□ 60W-24-200 | φ200         | 1015 | 391 | 368 | 249 | 482 | 444 | 59 | 432 | 414 |

## 性能曲線


※ 圧力損失は20℃における受熱側、放熱側の各測定平均値です。
※ 圧力損失は通過温度により変化します。

# 






#### NSA□40-8-100



#### NSA 40W-16-150



### 【排気熱回収温度(受熱側出口)の算出方法】

[熱回収率%÷100]×[排気熱温度℃ (放熱側入口)一外気温度で(受熱側入口)]

- +外気温度℃ (受熱側入口)
- =排気熱回収温度℃(受熱側出口)
- ※熱回収率%はご使用機種の性能曲線での、実際に使用する風量時の数値となります。
- ※熱回収曲線および圧力損失曲線の各数値は、社内テスト による数値であり、保証値ではありません。